


みなさんは， 2が無理数であることを証明できますか？
教科書に載っているものだけではない，
驚くべき14の証明をご紹介します．

2 = 1.41421356237309504880168872420969807856967187537694807317667973799073247846210703885038753432764157



𝟐が無理数
であることを

𝟐𝟐通りの方法で
証明してみた

MathAbyss



1. イントロダクション

MathAbyss

𝟐が無理数であることを14通りの方法で証明してみた



1. イントロダクション

MathAbyss

はじめに，この動画の構成を紹介していきます．

𝟐が無理数であることを14通りの方法で証明してみた



MathAbyss

1.イントロダクション

2. 𝟐はどのような数か
3.代数的な証明
4.幾何的な証明
5.解析的な証明
6.さらに高度な証明
7.まとめ

𝟐が無理数であることを14通りの方法で証明してみた



MathAbyss

この動画は，7個のチャプターによって構成されています．

1.イントロダクション

2. 𝟐はどのような数か
3.代数的な証明
4.幾何的な証明
5.解析的な証明
6.さらに高度な証明
7.まとめ

𝟐が無理数であることを14通りの方法で証明してみた



MathAbyss

まず，次のチャプターでは，実数 2の正体に迫ります．

1.イントロダクション

2. 𝟐はどのような数か
3.代数的な証明
4.幾何的な証明
5.解析的な証明
6.さらに高度な証明
7.まとめ

𝟐が無理数であることを14通りの方法で証明してみた



MathAbyss

その後， 2が無理数であることの14の証明を紹介します．

1.イントロダクション

2. 𝟐はどのような数か
3.代数的な証明
4.幾何的な証明
5.解析的な証明
6.さらに高度な証明
7.まとめ

𝟐が無理数であることを14通りの方法で証明してみた



MathAbyss

チャプター6では高度な数学を使用しますが，

1.イントロダクション

2. 𝟐はどのような数か
3.代数的な証明
4.幾何的な証明
5.解析的な証明
6.さらに高度な証明
7.まとめ

𝟐が無理数であることを14通りの方法で証明してみた



MathAbyss

どの証明も興味深いものばかりだと思いますので，

1.イントロダクション

2. 𝟐はどのような数か
3.代数的な証明
4.幾何的な証明
5.解析的な証明
6.さらに高度な証明
7.まとめ

𝟐が無理数であることを14通りの方法で証明してみた



MathAbyss

ぜひ，最後までご覧ください！

1.イントロダクション

2. 𝟐はどのような数か
3.代数的な証明
4.幾何的な証明
5.解析的な証明
6.さらに高度な証明
7.まとめ

𝟐が無理数であることを14通りの方法で証明してみた



2. 𝟐はどのような数か

MathAbyss

𝟐が無理数であることを14通りの方法で証明してみた



2. 𝟐はどのような数か

MathAbyss

𝟐が無理数であることを14通りの方法で証明してみた



2. 𝟐はどのような数か

MathAbyss

• 𝟐の定義

• 𝟐の構成

• 𝟐の歴史



2. 𝟐はどのような数か

MathAbyss

本題に入る前に，このチャプターでは， 2について深堀りしていきます．

• 𝟐の定義

• 𝟐の構成

• 𝟐の歴史



2. 𝟐はどのような数か

MathAbyss

まず， 2がどのような数なのかについて，
じっくり考えることから始めたいと思います．

𝟐の定義

2の定義



2. 𝟐はどのような数か

MathAbyss

2は，2乗して2になる正の実数のことです．

𝟐の定義



2. 𝟐はどのような数か

MathAbyss

これは 2の定義に他ならないのですが，
もう少し詳しく見ていきましょう．

𝟐の定義



2. 𝟐はどのような数か

MathAbyss

そもそも，実数がどのように定義されるのかについて，
簡単に流れを追ってみましょう．

𝟐の定義



2. 𝟐はどのような数か

MathAbyss

まず，ペアノの公理を満たす集合として自然数を定義します．

𝟐の定義



2. 𝟐はどのような数か

MathAbyss

次に，自然数と自然数の直積に，このような二項関係を導入すると，
これは同値関係となることが分かります．

これは，差が等しいペアを同一視するという同値関係です．

𝟐の定義



2. 𝟐はどのような数か

MathAbyss

自然数と自然数の直積を
この同値関係で割ることで得られる商集合として，

整数を定義します．

𝟐の定義



2. 𝟐はどのような数か

MathAbyss

そして，整数と整数の直積に，このような二項関係を導入すると，
こちらも同値関係となることが分かります．

これは，商が等しいペアを同一視するという同値関係です．

𝟐の定義



2. 𝟐はどのような数か

MathAbyss

整数と整数の直積を
この同値関係で割ることによって得られる商集合として，

有理数を定義します．
代数学の立場では，整数の商体として有理数を構成したことになります．

𝟐の定義



2. 𝟐はどのような数か

MathAbyss

こうして定義された有理数を用いて実数を定義することになるのですが，
その構成方法はいくつかあります．

ここでは，コーシー列を考える完備化による方法と，
デデキント切断を用いる方法を紹介します．

𝟐の定義



2. 𝟐はどのような数か

MathAbyss

コーシー列の定義は，任意の正の実数𝟐に対して，
ある正の整数𝟐 が存在して，𝟐 以上の任意の正の実数𝟐 と𝟐に対して，

𝟐𝑚と𝟐𝑛の差の絶対値が𝟐未満となるような数列のことです．

𝟐の定義



2. 𝟐はどのような数か

MathAbyss

有理数のみからなるコーシー列を有理コーシー列といい，
有理コーシー列全体の集合に，このような二項関係を定義します．

𝟐の定義



2. 𝟐はどのような数か

MathAbyss

これは同値関係であり，
差が0に収束する有理コーシー列を同一視するものです．

𝟐の定義



2. 𝟐はどのような数か

MathAbyss

有理コーシー列全体の集合を
この同値関係で割ることで得られる商集合として，

実数を定義します．
これは，有理数を完備化して実数を構成したことになります．

𝟐の定義



2. 𝟐はどのような数か

MathAbyss

もう一つの方法を紹介しましょう．
まず，これらの条件を満たす，

有理数の部分集合の組をデデキント切断といいます．

𝟐の定義



2. 𝟐はどのような数か

MathAbyss

それぞれのデデキント切断に対して，
その｢境界｣にあたる数を対応させることによって，

実数を定義します．
すなわち，デデキント切断全体の集合によって実数を構成します．

𝟐の定義



2. 𝟐はどのような数か

MathAbyss

このデデキント切断について，デデキントの公理が成り立ちます．
後で分かることですが，これは実数の連続性と同値な命題です．

𝟐の定義



2. 𝟐はどのような数か

MathAbyss

このようにして構成された実数には，
有理数との違いを決定付ける重要な性質があります．

それが，実数の連続性です．

𝟐の定義

実数の連続性



2. 𝟐はどのような数か

MathAbyss

実数の連続性は様々な言い換えが知られています．
その中の一つである，｢区間縮小法｣に注目してみましょう．

𝟐の定義

区間縮小法



2. 𝟐はどのような数か

MathAbyss

区間縮小法を用いると，
2乗して2になる正の実数が存在することが分かります．

𝟐の定義



2. 𝟐はどのような数か

MathAbyss

また，このような実数がただ一つしか存在しないこと，

すなわち 2の一意性は簡単に分かります．

𝟐の定義



2. 𝟐はどのような数か

MathAbyss

以上より，最初に述べた 2の定義である｢2乗して2になる正の実数｣がただ

一つの実数を定めていることが保証されました．

𝟐の定義

2



2. 𝟐はどのような数か

MathAbyss

ここからは， 2を具体的に構成することを考えてみます．

𝟐の構成

2の構成



2. 𝟐はどのような数か

MathAbyss

まず，有理コーシー列による 2の構成を見ていきましょう．
このような有理数列を考えます．

𝟐の構成



2. 𝟐はどのような数か

MathAbyss

この数列がコーシー列であることを確認しましょう．
任意の正の実数𝟐に対して，正の整数𝟐 をこのように定義します．

𝟐の構成



2. 𝟐はどのような数か

MathAbyss

このとき，𝟐 以上の任意の正の整数𝟐 と𝟐に対して，
この不等式が成り立ちます．

𝟐の構成



2. 𝟐はどのような数か

MathAbyss

よって，この数列は有理コーシー列です．

この数列の同値類が 2に他なりません．

𝟐の構成



2. 𝟐はどのような数か

MathAbyss

次に，デデキント切断による 2の構成を見ていきましょう．
このような有理数の部分集合𝟐と𝟐を考えます．

𝟐の構成



2. 𝟐はどのような数か

MathAbyss

この集合の組がデデキント切断であることを確認してみましょう．
𝟐と𝟐が空でないことは明らかです．

𝟐の構成



2. 𝟐はどのような数か

MathAbyss

また，𝟐の任意の元と𝟐の任意の元の間には，
この大小関係が成り立っています．

𝟐の構成



2. 𝟐はどのような数か

MathAbyss

𝟐と𝟐の共通部分は空集合であり，𝟐と𝟐の直和は有理数全体ですから，
𝟐と𝟐の組はデデキント切断です．

𝟐の構成



2. 𝟐はどのような数か

MathAbyss

このデデキント切断が 2に対応します．

𝟐の構成



2. 𝟐はどのような数か

MathAbyss

ここからは， 2の歴史について見ていきます．

𝟐の歴史

2の歴史



2. 𝟐はどのような数か

MathAbyss

2乗して2になる数の探索は古代から行われており，

紀元前2000年から紀元前1650年頃のバビロニアの粘土板には，
2の平方根の近似値が60進法で与えられていました．

𝟐の歴史



2. 𝟐はどのような数か

MathAbyss

紀元前800年から紀元前200年頃のインドでは，
2の平方根の近似値として，このような値が与えられていました．

𝟐の歴史



2. 𝟐はどのような数か

MathAbyss

古代ギリシャでは，｢ピタゴラスの定理｣などで知られるピタゴラスが，
ピタゴラス教団という宗教結社を創設し，

｢万物は数である｣という思想を掲げていました．

𝟐の歴史
https://ja.wikipedia.org/wiki/ピタゴラス教団



2. 𝟐はどのような数か

MathAbyss

ここでいう｢数｣とは有理数のことであり，
2の平方根も有理数であると考えていました．

𝟐の歴史



2. 𝟐はどのような数か

MathAbyss

教団に所属していたヒッパソスは，
2の平方根を正確な分数で表そうとしていたとき，

それが不可能である，
すなわち2の平方根が無理数であることを発見しました．

𝟐の歴史
https://ja.wikipedia.org/wiki/ヒッパソス



2. 𝟐はどのような数か

MathAbyss

これを聞いたピタゴラスは，無理数の存在を教団外部には秘密にし，
ヒッパソスを溺死させたという逸話が残っています．

𝟐の歴史
https://ja.wikipedia.org/wiki/ヒッパソス



2. 𝟐はどのような数か

MathAbyss

• 𝟐の定義

• 𝟐の構成

• 𝟐の歴史

2についての知識が深まったところで，本題に入りましょう．



MathAbyss



3. 代数的な証明

MathAbyss

𝟐が無理数であることを14通りの方法で証明してみた



3. 代数的な証明

MathAbyss

𝟐が無理数であることを14通りの方法で証明してみた



3. 代数的な証明

MathAbyss

• 最も基本的な証明
• 素因数分解の一意性を用いた証明
• 無限降下法による証明
• mod3による証明
• 下1桁に注目する証明
• 有理根定理による証明



3. 代数的な証明

MathAbyss

• 最も基本的な証明
• 素因数分解の一意性を用いた証明
• 無限降下法による証明
• mod3による証明
• 下1桁に注目する証明
• 有理根定理による証明

ここから， 2が無理数であることを色々な手法で証明していきます．
まず，代数的な性質に着目した証明を紹介します．



MathAbyss

3. 代数的な証明 最も基本的な証明

記念すべき1つ目の証明は，教科書に載っている，
背理法を用いた最も基本的な証明です．

最も基本的な証明



MathAbyss

3. 代数的な証明 最も基本的な証明

今回の目標は 2が無理数であることを証明することですが，
無理数は数式で表現することが困難です．

そこで， 2が有理数であると仮定すると，
矛盾が発生してしまうことを示していきましょう．



MathAbyss

3. 代数的な証明 最も基本的な証明

2が有理数であると仮定すると，正の整数𝟐と𝟐を用いて，
このように表すことができます．



MathAbyss

3. 代数的な証明 最も基本的な証明

ここで，𝟐と𝟐を正の整数としてよいのは， 2が正の実数であるからです．



MathAbyss

3. 代数的な証明 最も基本的な証明

さて，両辺に𝟐を掛けて，



MathAbyss

3. 代数的な証明 最も基本的な証明

両辺を2乗すると，このような等式が得られます．
左辺は偶数ですから，右辺も偶数です．

𝟐2が偶数であるとき，𝟐の偶奇はどうなるでしょうか．



MathAbyss

3. 代数的な証明 最も基本的な証明

𝟐が奇数であると仮定すると，𝟐2は奇数となり矛盾します．
つまり，𝟐は偶数です．



MathAbyss

3. 代数的な証明 最も基本的な証明

𝟐が偶数であることから，ある正の整数𝟐が存在して，𝟐 = 2𝟐となります．



MathAbyss

3. 代数的な証明 最も基本的な証明

これを先ほどの等式に代入して，



MathAbyss

3. 代数的な証明 最も基本的な証明

整理するとこのような等式を得ます．
右辺は偶数ですから左辺も偶数であり，

先ほどの議論を踏まえると，𝟐は偶数になります．



MathAbyss

3. 代数的な証明 最も基本的な証明

ここまで分かったことをまとめると，𝟐と𝟐は偶数になります．
すなわち，2は𝟐と𝟐の公約数です．



MathAbyss

3. 代数的な証明 最も基本的な証明

最初の設定で，𝟐と𝟐が互いに素，
すなわち右辺の分数が既約分数であると仮定しておくと，



MathAbyss

3. 代数的な証明 最も基本的な証明

これは𝟐と𝟐が互いに素であることに矛盾します．

したがって， 2が無理数であることが証明できました．



MathAbyss

3. 代数的な証明 素因数分解の一意性を用いた証明

2つ目は，先ほどの証明を少し改変したものになります．

素因数分解の一意性
を用いた証明



MathAbyss

3. 代数的な証明 素因数分解の一意性を用いた証明

先ほどの証明では，𝟐と𝟐は互いに素としていましたが，
この証明ではその条件は不要です．



MathAbyss

3. 代数的な証明 素因数分解の一意性を用いた証明

この等式を導くところまでは先程と同様なので省略します．



MathAbyss

3. 代数的な証明 素因数分解の一意性を用いた証明

𝟐, 𝟐が持つ素因数2の個数をそれぞれ𝟐 , 𝟐とすると，
左辺は素因数2を2𝟐 + 1個持ち，

右辺は素因数2を2𝟐 個持つことが分かります．
すなわち，左辺は素因数2を奇数個，

右辺は素因数2を偶数個持つことになり矛盾します．



MathAbyss

3. 代数的な証明 素因数分解の一意性を用いた証明

したがって， 2は無理数です．



MathAbyss

3. 代数的な証明 無限降下法による証明

3つ目は無限降下法を用いた証明です．無限降下法は背理法の一種で，
正の整数に最小値があることを利用した証明方法です．

無限降下法による証明



MathAbyss

3. 代数的な証明 無限降下法による証明

この等式から出発します．
先ほどの議論では，𝟐と𝟐がともに偶数であることが分かりました．



MathAbyss

3. 代数的な証明 無限降下法による証明

よって，ある正の整数𝟐1と𝟐1が存在して，
このように表すことができます．



MathAbyss

3. 代数的な証明 無限降下法による証明

このとき，𝟐1は𝟐より小さく，𝟐1は𝟐より小さい正の整数であり，

𝟐1/𝟐1は 2になります．



MathAbyss

3. 代数的な証明 無限降下法による証明

この𝟐1と𝟐1に対して，同様の議論をすることにより，
𝟐1と𝟐1がともに偶数であることが分かり，



MathAbyss

3. 代数的な証明 無限降下法による証明

ある正の整数𝟐2と𝟐2が存在して，このように表すことができます．



MathAbyss

3. 代数的な証明 無限降下法による証明

このとき，𝟐2は𝟐1より小さく，𝟐2は𝟐1より小さい正の整数であり，

𝟐2/𝟐2は 2になります．



MathAbyss

3. 代数的な証明 無限降下法による証明

同様の操作を繰り返すと， 2の分数表記が無数に得られます．



MathAbyss

3. 代数的な証明 無限降下法による証明

これらの分子や分母の列は，いくらでも小さくなる正の整数の列ですが，
正の整数には最小値1が存在するため，このような列は存在しません．



MathAbyss

3. 代数的な証明 無限降下法による証明

したがって， 2は無理数です．



MathAbyss

3. 代数的な証明 mod 3による証明

4つ目はmod 3を考える証明です．

mod 3による証明



MathAbyss

3. 代数的な証明 mod 3による証明

これまでと同様に，この等式から出発します．
𝟐と𝟐は互いに素であると仮定しましょう．



MathAbyss

3. 代数的な証明 mod 3による証明

右辺を3で割った余りは0か1であり，
左辺を3で割った余りは0か2であることから，



MathAbyss

3. 代数的な証明 mod 3による証明

左辺と右辺はともに3の倍数，
すなわち𝟐と𝟐はともに3の倍数であることが分かり，
これは𝟐と𝟐が互いに素であることに矛盾します．



MathAbyss

3. 代数的な証明 mod 3による証明

よって， 2は無理数です．



MathAbyss

3. 代数的な証明 下1桁に注目する証明

5つ目は下1桁に注目していきます．
つまり，mod 10を考えるということです．

下1桁に注目する証明



MathAbyss

3. 代数的な証明 下1桁に注目する証明

やはりこの等式から出発します．
𝟐と𝟐は互いに素であるとしておきましょう．



MathAbyss

3. 代数的な証明 下1桁に注目する証明

右辺の下1桁としてあり得るのは0,1,4,5,6,9のいずれかであり，
左辺の下1桁としてあり得るのは0,2,8のいずれかであることから，



MathAbyss

3. 代数的な証明 下1桁に注目する証明

左辺と右辺はともに下1桁が0，
すなわち𝟐と𝟐はともに10の倍数であることが分かり，
これは𝟐と𝟐が互いに素であることに矛盾します．



MathAbyss

3. 代数的な証明 下1桁に注目する証明

よって， 2は無理数です．



MathAbyss

3. 代数的な証明 有理根定理による証明

6つ目は有理根定理を用いる証明です．

有理根定理による証明
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3. 代数的な証明 有理根定理による証明

2は2次方程式𝟐2 − 2 = 0の解の1つです．



MathAbyss

3. 代数的な証明 有理根定理による証明

この2次方程式が有理数解を持つとすると，
有理根定理により， (定数項の約数)/(最高次の係数の約数)と

書けるので，これらのいずれかになります．



MathAbyss

3. 代数的な証明 有理根定理による証明

しかし，これらは方程式の解でないため， 2は無理数です．



3. 代数的な証明

MathAbyss

• 最も基本的な証明
• 素因数分解の一意性を用いた証明
• 無限降下法による証明
• mod3による証明
• 下1桁に注目する証明
• 有理根定理による証明

代数的な証明のうち，基本的なものはここまで紹介した6つになります．



MathAbyssMathAbyssMathAbyssMathAbyssMathAbyssMathAbyssMathAbyssMathAbyssMathAbyssMathAbyss
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4. 幾何的な証明

MathAbyss

• 正方形を用いた証明
• 直角二等辺三角形を用いた証明

次に，無理数という代数的な性質を，
幾何的に証明する方法について見ていきましょう．



MathAbyss

4. 幾何的な証明 正方形を用いた証明

1つ目は正方形を用いた証明です．

正方形を用いた証明



MathAbyss

4. 幾何的な証明 正方形を用いた証明

先ほどのチャプターでたどり着いたこの等式からスタートします．



MathAbyss

4. 幾何的な証明 正方形を用いた証明

この等式を，1辺の長さが𝟐の正方形2つの面積と，
1辺の長さが𝟐の正方形の面積が等しいとして解釈します．

𝟐2𝟐2 𝟐2



MathAbyss

4. 幾何的な証明 正方形を用いた証明

この大小関係に注意して，議論を進めます．



MathAbyss

4. 幾何的な証明 正方形を用いた証明

1辺の長さが𝟐の正方形を，
1辺の長さが𝟐の正方形2つでこの図のように覆うと，



MathAbyss

4. 幾何的な証明 正方形を用いた証明

小さい正方形2つが重なった部分の面積が，
小さい正方形で覆われていない部分の面積に等しくなる必要があります．



MathAbyss

4. 幾何的な証明 正方形を用いた証明

重なった部分は1辺の長さが2𝟐 − 𝟐の正方形であり，



MathAbyss

4. 幾何的な証明 正方形を用いた証明

覆われていない部分の2つは合同で，
それぞれ1辺の長さが𝟐 − 𝟐の正方形になっています．



MathAbyss

4. 幾何的な証明 正方形を用いた証明

よって，面積について，この等式が成り立つことが分かります．



MathAbyss

4. 幾何的な証明 正方形を用いた証明

ここで，正の整数𝟐1と𝟐1をこのように定めると，



MathAbyss

4. 幾何的な証明 正方形を用いた証明

𝟐1と𝟐1はこの等式を満たし，



MathAbyss

4. 幾何的な証明 正方形を用いた証明

それぞれこのような大小関係が成り立ちます．



MathAbyss

4. 幾何的な証明 正方形を用いた証明

この𝟐1と𝟐1に対して，同様の操作を繰り返すことによって，



MathAbyss

4. 幾何的な証明 正方形を用いた証明

この等式を満たすより小さい正の整数の組を見つけることができます．



MathAbyss

4. 幾何的な証明 正方形を用いた証明

しかし，正の整数には最小値1が存在します．



MathAbyss

4. 幾何的な証明 正方形を用いた証明

これは矛盾となり， 2が無理数であることが証明できました．



MathAbyss

4. 幾何的な証明 直角二等辺三角形を用いた証明

2つ目は直角二等辺三角形を用いた証明です．

直角二等辺三角形を
用いた証明



MathAbyss

4. 幾何的な証明 直角二等辺三角形を用いた証明

まず，有名な直角二等辺三角形を考えます．



MathAbyss

4. 幾何的な証明 直角二等辺三角形を用いた証明

2が有理数であると仮定すると，
このように正の整数の比で表すことができるので，



MathAbyss

4. 幾何的な証明 直角二等辺三角形を用いた証明

すべての辺の長さが整数である
直角二等辺三角形が存在することになります．



MathAbyss

4. 幾何的な証明 直角二等辺三角形を用いた証明

その中で，3つの辺の長さの総和が最小であるような三角形を考えます．
すなわち，𝟐と𝟐は互いに素であるとします．



MathAbyss

4. 幾何的な証明 直角二等辺三角形を用いた証明

直角でない角を持つ頂点を中心とする半径𝟐の円と斜辺の交点をとり，



MathAbyss

4. 幾何的な証明 直角二等辺三角形を用いた証明

これによってできる三角形について考えると，



MathAbyss

4. 幾何的な証明 直角二等辺三角形を用いた証明

この三角形は直角二等辺三角形であり，



MathAbyss

4. 幾何的な証明 直角二等辺三角形を用いた証明

各辺の長さは整数になります．



MathAbyss

4. 幾何的な証明 直角二等辺三角形を用いた証明

しかし，この三角形は元の三角形より明らかに小さいため，



MathAbyss

4. 幾何的な証明 直角二等辺三角形を用いた証明

元の三角形が満たす｢辺の長さの総和の最小性｣に矛盾します．



MathAbyss

4. 幾何的な証明 直角二等辺三角形を用いた証明

したがって， 2は無理数です．



4. 幾何的な証明

MathAbyss

• 正方形を用いた証明
• 直角二等辺三角形を用いた証明

ここまで，代数的アプローチと幾何的アプローチを紹介してきました．



MathAbyss
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5. 解析的な証明

MathAbyss

• 等比数列の収束性を用いた証明
• 連分数展開による証明

次に，解析的な証明を紹介していきます．



MathAbyss

5. 解析的な証明 等比数列の収束性を用いた証明

1つ目は等比数列の極限に注目する証明です．

等比数列の収束性
を用いた証明



MathAbyss

5. 解析的な証明 等比数列の収束性を用いた証明

まず， 2 − 1
𝑛
を考えます．



MathAbyss

5. 解析的な証明 等比数列の収束性を用いた証明

二項定理を使うとこのように展開することができるので，



MathAbyss

5. 解析的な証明 等比数列の収束性を用いた証明

ある整数𝟐𝑛と𝟐𝑛が存在して，このように表すことができます．



MathAbyss

5. 解析的な証明 等比数列の収束性を用いた証明

ここで， 2が有理数であると仮定すると，
ある正の整数𝟐と𝟐が存在して，このように書けるので，



MathAbyss

5. 解析的な証明 等比数列の収束性を用いた証明

両辺に𝟐を掛けることで，この等式を得ます．
右辺は常に整数となることに注意しましょう．



MathAbyss

5. 解析的な証明 等比数列の収束性を用いた証明

一方，𝟐を十分大きくとることによって，
左辺は1よりも小さい値になることが分かります．



MathAbyss

5. 解析的な証明 等比数列の収束性を用いた証明

これは矛盾です．すなわち， 2は無理数であることが分かりました．



MathAbyss

5. 解析的な証明 連分数展開による証明

2つ目は連分数展開を用いた証明です．

連分数展開による証明



MathAbyss

5. 解析的な証明 連分数展開による証明

この無限正則連分数を考えます．
正則連分数とは，すべての分子が1である連分数のことです．



MathAbyss

5. 解析的な証明 連分数展開による証明

この無限正則連分数は，
このような有限正則連分数の極限として定義されます．



MathAbyss

5. 解析的な証明 連分数展開による証明

この数列が満たす漸化式を求めるとこのようになり，



MathAbyss

5. 解析的な証明 連分数展開による証明

この数列は，1つ目のチャプターで登場した
有理コーシー列と同じであることが分かります．



MathAbyss

5. 解析的な証明 連分数展開による証明

したがって，この数列は収束し，

その極限は 2であることが分かります．



MathAbyss

5. 解析的な証明 連分数展開による証明

よって， 2はこのように
無限正則連分数展開可能であることが分かりました．



MathAbyss

5. 解析的な証明 連分数展開による証明

実は，ユークリッドの互除法を考えることにより，
任意の有理数は有限正則連分数展開可能であることが分かるので，



MathAbyss

5. 解析的な証明 連分数展開による証明

その対偶を考えることで，
無限正則連分数展開可能な実数は無理数であることが分かります．



MathAbyss

5. 解析的な証明 連分数展開による証明

よって， 2は無理数です．



5. 解析的な証明

MathAbyss

• 等比数列の収束性を用いた証明
• 連分数展開による証明

ここまでで，数学の3大分野である代数･幾何･解析
それぞれによる証明を見てきました．
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6. さらに高度な証明

MathAbyss

最後に，高度な数学を用いた証明を紹介します．

• 線形代数による証明
• ガロア理論による証明
• 𝒑進付値を用いた証明
• ルジャンドル多項式を用いた証明



6. さらに高度な証明

MathAbyss

大学数学をフルに活用して，

2が無理数であることを証明してみましょう．

• 線形代数による証明
• ガロア理論による証明
• 𝒑進付値を用いた証明
• ルジャンドル多項式を用いた証明



MathAbyss

6. さらに高度な証明 線形代数による証明

1つ目は，多くの理工系の大学生が学ぶ，線形代数を用いた証明です．

線形代数による証明



MathAbyss

6. さらに高度な証明 線形代数による証明

まず，このような2次正方行列𝟐を考えます．



MathAbyss

6. さらに高度な証明 線形代数による証明

行列𝟐が表す線形変換は，整数のペアを整数のペアに移します．



MathAbyss

6. さらに高度な証明 線形代数による証明

ここで，このような集合𝟐を考えましょう．



MathAbyss

6. さらに高度な証明 線形代数による証明

𝟐の元に対して，先ほどの線形変換を適用すると，再び𝟐の元が得られ，



MathAbyss

6. さらに高度な証明 線形代数による証明

これは，𝟐の元に 2 − 1を掛けることに他ならないことが分かります．



MathAbyss

6. さらに高度な証明 線形代数による証明

1 𝟐 𝟐に対して，この線形変換を繰り返し適用することで，



MathAbyss

6. さらに高度な証明 線形代数による証明

いくらでも小さい𝟐の元が得られることが分かります．



MathAbyss

6. さらに高度な証明 線形代数による証明

一方， 2が有理数であると仮定すると，
このような既約分数で表されるので，



MathAbyss

6. さらに高度な証明 線形代数による証明

𝟐の元はこのように表すことができ，最小値が存在することが分かります．



MathAbyss

6. さらに高度な証明 線形代数による証明

これは矛盾です．



MathAbyss

6. さらに高度な証明 線形代数による証明

したがって， 2は無理数であることが分かりました．



MathAbyss

6. さらに高度な証明 ガロア理論による証明

2つ目は，ガロア理論を用いた，代数学による証明です．

ガロア理論による証明



MathAbyss

6. さらに高度な証明 ガロア理論による証明

まず，この有理数係数多項式を考えます．

この多項式は， 2を根に持つことがわかります．



MathAbyss

6. さらに高度な証明 ガロア理論による証明

次に，この多項式の最小分解体𝟐 を考えます．

具体的には，有理数体に 2を添加した体になります．



MathAbyss

6. さらに高度な証明 ガロア理論による証明

ここで，このようなガロア群𝟐 を考えます．
𝟐 は，𝟐 の自己同型写像であって，

任意の有理数を固定するもの全体からなります．



MathAbyss

6. さらに高度な証明 ガロア理論による証明

2は多項式𝟐の根であることから，この等式を満たします．



MathAbyss

6. さらに高度な証明 ガロア理論による証明

ここで，両辺に𝟐 𝟐 𝟐 を作用させると，



MathAbyss

6. さらに高度な証明 ガロア理論による証明

𝟐は有理数を固定する準同型であるため，このように計算できます．



MathAbyss

6. さらに高度な証明 ガロア理論による証明

よって，𝜎( 2)は多項式𝟐の根になります．



MathAbyss

6. さらに高度な証明 ガロア理論による証明

ここで，𝟐をこのようにとってみます．



MathAbyss

6. さらに高度な証明 ガロア理論による証明

このとき， 2は− 2に移ることが分かります．



MathAbyss

6. さらに高度な証明 ガロア理論による証明

ガロア理論の基本定理より，有理数体はこのように表すことができますが，



MathAbyss

6. さらに高度な証明 ガロア理論による証明

先ほどの𝟐 𝟐 𝟐 が満たす性質から， 

2は左辺の集合に属していないことが分かります．



MathAbyss

6. さらに高度な証明 ガロア理論による証明

したがって， 2は無理数です．



MathAbyss

6. さらに高度な証明 𝟐進付値を用いた証明

3つ目は，𝟐進付値を用いた，整数論を用いた証明です．

𝟐進付値を用いた証明



MathAbyss

6. さらに高度な証明 𝟐進付値を用いた証明

まず，𝟐進付値について説明しておきます．𝟐を素数とします．



MathAbyss

6. さらに高度な証明 𝟐進付値を用いた証明

0でない任意の有理数𝟐に対して，
整数𝟐，𝟐と互いに素な正の整数𝟐，

𝟐と互いに素な0でない整数𝟐が存在して，
この等式が成り立つことが知られています．



MathAbyss

6. さらに高度な証明 𝟐進付値を用いた証明

このとき，𝟐を𝟐の𝟐進付値といいます．



MathAbyss

6. さらに高度な証明 𝟐進付値を用いた証明

𝟐進付値について，このような性質が成り立ちます．



MathAbyss

6. さらに高度な証明 𝟐進付値を用いた証明

以上を踏まえて， 2が無理数であることを証明していきましょう．



MathAbyss

6. さらに高度な証明 𝟐進付値を用いた証明

2が有理数であると仮定します． 2はこの等式を満たします．



MathAbyss

6. さらに高度な証明 𝟐進付値を用いた証明

両辺の2進付値を考えると，
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6. さらに高度な証明 𝟐進付値を用いた証明

このように計算できるので，



MathAbyss

6. さらに高度な証明 𝟐進付値を用いた証明

2の2進付値が整数になりません．これは矛盾です．
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6. さらに高度な証明 𝟐進付値を用いた証明

したがって， 2は無理数です．



MathAbyss

6. さらに高度な証明 ルジャンドル多項式を用いた証明

4つ目は，ルジャンドル多項式を用いた証明です．

ルジャンドル多項式
を用いた証明
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6. さらに高度な証明 ルジャンドル多項式を用いた証明

ルジャンドル多項式は，
ルジャンドルの微分方程式を満たす関数として定義されます．
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6. さらに高度な証明 ルジャンドル多項式を用いた証明

このとき，ルジャンドル多項式は
ロドリゲスの公式によって表すことができます．



MathAbyss

6. さらに高度な証明 ルジャンドル多項式を用いた証明

ここで，𝟐を2𝟐 − 1に置き換えることによって，
このような表示を得ます．



MathAbyss

6. さらに高度な証明 ルジャンドル多項式を用いた証明

まず，このような積分について考えます．



MathAbyss

6. さらに高度な証明 ルジャンドル多項式を用いた証明

部分積分により計算を進めると



MathAbyss

6. さらに高度な証明 ルジャンドル多項式を用いた証明

このように整理することができます．同様の計算を続けてみましょう．



MathAbyss

6. さらに高度な証明 ルジャンドル多項式を用いた証明

部分積分を繰り返すことによって，このようになるのですが，



MathAbyss

6. さらに高度な証明 ルジャンドル多項式を用いた証明

1 + 𝟐 −
1

2の𝟐回微分を計算することで，



MathAbyss

6. さらに高度な証明 ルジャンドル多項式を用いた証明

最終的にこの等式を導くことができました．



MathAbyss

6. さらに高度な証明 ルジャンドル多項式を用いた証明

一方，この積分を別の方法で計算することを考えてみましょう．



MathAbyss

6. さらに高度な証明 ルジャンドル多項式を用いた証明

ルジャンドル多項式は整数係数多項式であることが分かるので，
この積分について考えるところから始めましょう．



MathAbyss

6. さらに高度な証明 ルジャンドル多項式を用いた証明

置換積分を計算することにより，このように変形することができます．



MathAbyss

6. さらに高度な証明 ルジャンドル多項式を用いた証明

これは整数係数多項式の定積分なので，
ある有理数𝟐𝑘と𝟐𝑘が存在して，このように表すことができます．



MathAbyss

6. さらに高度な証明 ルジャンドル多項式を用いた証明

したがって，元の積分についても，
ある有理数𝟐と𝟐が存在して，このように表すことができます．



MathAbyss

6. さらに高度な証明 ルジャンドル多項式を用いた証明

まとめると，このようになります．



MathAbyss

6. さらに高度な証明 ルジャンドル多項式を用いた証明

両辺の分母を払うことにより，
ある整数𝟐 , 𝟐 , 𝟐が存在して，この等式が成り立つことが分かりました．



MathAbyss

6. さらに高度な証明 ルジャンドル多項式を用いた証明

次に，左辺の被積分関数に注目して，
この積分を上から評価してみましょう．



MathAbyss

6. さらに高度な証明 ルジャンドル多項式を用いた証明

まず，この関数の最大値を求めてみましょう．



MathAbyss

6. さらに高度な証明 ルジャンドル多項式を用いた証明

微分して増減表を書くことによって，

𝑥 = 2− 1のとき，最大値3 − 2 2をとることが分かります．



MathAbyss

6. さらに高度な証明 ルジャンドル多項式を用いた証明

よって，先ほどの積分は，このように評価できます．



MathAbyss

6. さらに高度な証明 ルジャンドル多項式を用いた証明

はさみうちの原理より，この積分は0に収束することが分かります．



MathAbyss

6. さらに高度な証明 ルジャンドル多項式を用いた証明

ここで， 2が有理数であると仮定すると，
このように表すことができるので，



MathAbyss

6. さらに高度な証明 ルジャンドル多項式を用いた証明

先ほどの積分について，この等式が成り立つことが分かります．



MathAbyss

6. さらに高度な証明 ルジャンドル多項式を用いた証明

ここで，左辺は正ですから，右辺は正の整数であることが分かります．

正の整数



MathAbyss

6. さらに高度な証明 ルジャンドル多項式を用いた証明

ところが，𝟐を十分大きくすると，左辺は1より小さくなります．

正の整数

0に収束



MathAbyss

6. さらに高度な証明 ルジャンドル多項式を用いた証明

これは矛盾なので， 2は無理数です．



6. さらに高度な証明

MathAbyss

このように， 2が無理数であることを，
高級な数学を用いることで証明することもできるのです．

• 線形代数による証明
• ガロア理論による証明
• 𝒑進付値を用いた証明
• ルジャンドル多項式を用いた証明



7. まとめ

MathAbyss

𝟐が無理数であることを14通りの方法で証明してみた



7. まとめ

MathAbyss

いかがでしたか？

𝟐が無理数であることを14通りの方法で証明してみた



✓ 𝟐はどのような数か 

✓ 𝟐の定義

✓ 𝟐の構成

✓ 𝟐の歴史
✓代数的な証明 

✓最も基本的な証明
✓素因数分解の一意性を用いた証明
✓無限降下法による証明
✓mod3による証明
✓下1桁に注目する証明
✓有理根定理による証明

✓幾何的な証明 
✓正方形を用いた証明
✓直角二等辺三角形を用いた証明

✓解析的な証明 
✓等比数列の収束性を用いた証明
✓連分数展開による証明

✓さらに高度な証明 
✓線形代数による証明
✓ガロア理論による証明
✓𝟐進付値を用いた証明
✓ルジャンドル多項式を用いた証明

MathAbyss

この動画では， 2が無理数であることの様々な証明をご紹介しました．

𝟐が無理数であることを14通りの方法で証明してみた



MathAbyss

この動画で紹介しきれなかった証明や，
詳細を省略してしまった内容もありますが，

楽しんでいただけましたでしょうか？

𝟐が無理数であることを14通りの方法で証明してみた



MathAbyss

MathAbyssでは，数学に関する記事を公開しているWebサイト
｢MathAbyss｣を運営しております．

今後も様々な動画を制作していきますので，
この動画に対する高評価，YouTubeのチャンネル登録を

よろしくお願いします！

各種SNS等のフォローもしていただけると励みになります！

最後までご視聴いただき，ありがとうございました！！！

𝟐が無理数であることを14通りの方法で証明してみた



ご視聴ありがとうございました！
チャンネル登録よろしくお願いします！
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