実数論

位相空間論

ユークリッド空間

$n$個の$\mathbb{R}$の直積$\mathbb{R}^n$は,$n$次元空間と同一視することができる.集合$\mathbb{R}^n$が持つ構造を解き明かす.ユークリッド空間の定義$\mathbb{R}^n$に演算を導入することを...
位相空間論

ユークリッド空間の開集合・閉集合

ユークリッド空間における開集合と閉集合を厳密に定義し,それらの性質を解説する.開集合開集合の基盤となる集合を定義しておこう.定義1$n\in \mathbb{N}$,$\bm{a}\in \mathbb{R}^n$,$\varepsilon...
位相空間論

ユークリッド空間の点列

実数に対して実数列を考えたのと同様に,ユークリッド空間に対して点列を考えることができる.ユークリッド空間の開集合や閉集合は,点列の性質に言い換えることができる.点列点列は$\mathbb{N}$からの写像として定義する.定義1$n\in \...
タイトルとURLをコピーしました