代数学

代数学

生成系

群の元の構造を捉えるために,群の生成という概念を導入する.生成系定義1$G$を群,$S\subset G$,$g\in G$とする.ある$n\in \mathbb{N}$と$x_1,x_2,\dots ,x_n\in S$が存在して\と表さ...
代数学

一般線形群と特殊線形群

一般線形群定義1体$K$上のベクトル空間$V$の全単射な線形変換全体の集合を$V$の一般線形群(general linear group)といい,$\mathrm{GL}(V)$で表す.定義1は,次のように言い換えることができる.定義2$n...
代数学

部分群

部分群定義1$G$を群,$H\subset G$とする.$H$が$G$上の演算に関して群であるとき,$H$を$G$の部分群(subgroup)という.部分群の基本性質を確認しよう.命題1$H$を群$G$の部分群とするとき,次が成り立つ.$e...
代数学

体の定義体では,環と同様に2つの演算を考える.この記事では,集合$S$上の二項演算$\phi ,\psi$を\で表すことにする.体の定義には環やその周辺の概念についての定義の理解が欠かせない.詳しくは以下の記事を参照するとよい.この記事を含...
代数学

重要な代数的構造の1つである環は,集合とその2つの演算について考える.環の定義環環では2つの演算を考える.この記事では,集合$S$上の二項演算$\phi ,\psi$を\で表すことにする.環の定義には群やその周辺の概念についての定義の理解が...
代数学

対称群

代数的構造である群は,対称性を捉えるのに非常に便利な概念である.ここでは,置換とその演算を考え,それによって構成される群について扱う.置換群一般の集合に対して,置換は次のように定義される.定義1$X$を集合とする.全単射$\sigma :X...
代数学

集合とその演算の構造についてとらえるために非常に重要で抽象的な概念である群について徹底的に解説する.群の定義演算群とは,ある条件を満たす,演算が定義された集合のことを指す概念である.まずは演算について確認する.定義1$S$を集合とする.写像...
代数学

ベクトル空間

ベクトル空間とは,2つの演算と8つの性質を満たす集合のことである.ベクトル空間の定義さて,線形代数や微分積分の世界では,実数の集合$\mathbb{R}$は次のような性質を満たすものとして考えていた.公理1実数全体の集合$\mathbb{R...
代数学

過去最大の素数が発見!

2024年10月,衝撃的なニュースが飛び込んできた.なんと,約6年ぶりに「現時点で素数であることが分かっている具体的な最大の整数」が更新されたのだ.この記事では,発見された素数を紹介するとともに,背景にある素数の知識や素数発見の最前線を解説...
タイトルとURLをコピーしました